Harmonic Morphisms with 1-dim Fibres on 4-dim Einstein Manifolds

نویسنده

  • RADU PANTILIE
چکیده

Harmonic morphisms are smooth maps between Riemannian manifolds which preserve Laplace's equation. They are characterised as harmonic maps which are horizontally weakly conformal 14, 20]. R.L. Bryant 7] proved that there are precisely two types of harmonic morphisms with one-dimensional bres which can be deened on a constant curvature space of dimension at least four. Here we prove that, on an Einstein four-manifold, there are precisely three types of harmonic morphisms with one-dimensional bres, the third type being new.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Morphisms with One-dimensional Fibres on Einstein Manifolds

We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.

متن کامل

Harmonic Morphisms with One-dimensional Fibres on Conformally-flat Riemannian Manifolds

We classify the harmonic morphisms with one-dimensional fibres (1) from real-analytic conformally-flat Riemannian manifolds of dimension at least four, and (2) between conformally-flat Riemannian manifolds of dimensions at least three.

متن کامل

Twistorial Harmonic Morphisms with One-dimensional Fibres on Self-dual Four-manifolds

We classify twistorial harmonic morphisms with one-dimensional fibres from self-dual four-manifolds. Along the way, we find two new constructions of

متن کامل

Harmonic morphisms of warped product type from Einstein manifolds

Weitzenböck type identities for harmonic morphisms of warped product type are developed which lead to some necessary conditions for their existence. These necessary conditions are further studied to obtain many nonexistence results for harmonic morphisms of warped product type from Einstein manifolds. Mathematics Subject Classification (2000). 58E20, 53C20, 53C25.

متن کامل

Harmonic Morphisms from Even-dimensional Hyperbolic Spaces

In this paper we give a method for constructing complex valued harmonic morphisms in some pseudo-Riemannian manifolds using a parametrization of isotropic subbundles of the complexified tangent bundle. As a result we construct the first known examples of complex valued harmonic morphisms in real hyperbolic spaces of even dimension not equal to 4 which do not have totally geodesic fibres.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007